Airy Functions for Compact Lie Groups
نویسندگان
چکیده
The classical Airy function has been generalised by Kontsevich to a function of a matrix argument, which is an integral over the space of (skew) hermitian matrices of a unitary-invariant exponential kernel. In this paper, the Kontsevich integral is generalised to integrals over the Lie algebra of an arbitrary connected compact Lie group, using exponential kernels invariant under the group. The (real) polynomial defining this kernel is said to have the Airy property if the integral defines a function of moderate growth. A general sufficient criterion for a polynomial to have the Airy property is given. It is shown that an invariant polynomial on the Lie algebra has the Airy property if its restriction to a Cartan subalgebra has the Airy property. This result is used to evaluate these invariant integrals completely and explicitly on the hermitian matrices, obtaining formulae that contain those of Kontsevich as special cases.
منابع مشابه
ar X iv : 0 70 7 . 32 35 v 1 [ m at h - ph ] 2 1 Ju l 2 00 7 Airy Functions for Compact Lie Groups
The classical Airy function has been generalised by Kontsevich to a function of a matrix argument, which is an integral over the space of (skew) hermitian matrices of a unitary-invariant exponential kernel. In this paper, the Kontsevich integral is generalised to integrals over the Lie algebra of an arbitrary connected compact Lie group, using exponential kernels invariant under the group. The ...
متن کاملSimple Lie algebras and topological ODEs
For a simple Lie algebra g we define a system of linear ODEs with polynomial coefficients, which we call the topological equation of g-type. The dimension of the space of solutions regular at infinity is equal to the rank of the Lie algebra. For the simplest example g = sl2(C) the regular solution can be expressed via products of Airy functions and their derivatives; this matrix valued function...
متن کاملPaley-wiener Theorem for Line Bundles over Compact Symmetric Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملHopf algebras of smooth functions on compact Lie groups
A C∞-Hopf algebra is a C∞-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those C∞-Hopf algebras which are given by the algebra C∞(G) of smooth functions on some compact Lie group G, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.
متن کاملLattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کامل